Philips MP40/50 Medical Alarms User Manual


 
6 ECG, Arrhythmia, and ST Monitoring Arrhythmia Alarms
112
Automatic Arrhythmia Relearn
Arrhythmia relearning is initiated automatically whenever:
ECG monitoring is switched on
The ECG Lead or Lead Label is changed manually, or when fallback occurs
•A
Leads Off INOP condition (that has been active for > 60 seconds) ends.
If you are monitoring multi-lead arrhythmia and there is a change in one lead only, relearning happens
only in the affected lead. During this learning phase, the system will continue monitoring using the
other lead. Therefore, the delayed arrhythmia wave is not labeled
L and there is no LEARNING ECG
rhythm status message. In addition, alarm timeout periods are maintained, stored arrhythmia
templates are maintained for the operative lead, and all alarms switched on are active.
Arrhythmia Relearn and Lead Fallback
Lead fallback triggers an automatic arrhythmia relearn.
WARNING If arrhythmia learning takes place during ventricular rhythm, the ectopics may be incorrectly learned as
the normal QRS complex. This may result in missed detection of subsequent events of V-Tach and V-
Fib.
For this reason you should:
take care to initiate arrhythmia relearning only during periods of predominantly normal rhythm and
when the ECG signal is relatively noise-free
be aware that arrhythmia relearning can happen automatically
respond to any INOP messages (for example, if you are prompted to reconnect electrodes)
be aware that a disconnected EASI electrode triggers an arrhythmia relearn on all leads
always ensure that the arrhythmia algorithm is labeling beats correctly.
Arrhythmia Alarms
Arrhythmia alarms can be switched on and off and the settings changed just like other measurement
alarms, as described in the Alarms section. Special alarm features which apply only to arrhythmia are
described here.
The different alarms detected and generated by the monitor depend on the level of arrhythmia analysis
that is enabled. For a complete list of arrhythmia alarms and INOPs, see the Alarms chapter.
The monitor detects arrhythmia alarm conditions by comparing ECG data to a set of pre-defined
criteria. An alarm can be triggered by a rate exceeding a threshold (for example, HR >xx), an abnormal
rhythm (for example, Ventricular Bigeminy), or an ectopic event (for example, Pair PVCs).